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 Objects: nodes, vertices V where number of nodes is N
 Interactions: links, edges E
 System: network, graph G(V,E)
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 Network often refers to real systems
▪ Web, Social network, Metabolic network
▪ Language: Network, node, link

 Graph is a mathematical representation of a network
▪ Web graph, Social graph, Knowledge Graph
▪ Language: Graph, vertex, edge

 We will try to make this distinction whenever it is 
appropriate, but in most cases we will use the two terms 
interchangeably
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 How to build a graph:
▪ What are nodes?
▪ What are edges?

 Choice of the proper network representation of a 
given domain/problem determines our ability to use 
networks successfully:
▪ In some cases there is a unique, unambiguous representation
▪ In other cases, the representation is by no means unique
▪ The way you assign links will determine the nature of the question you 

can study
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Types of Graphs
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 Graph G=(V,E)
▪ V = set of vertices
▪ E = set of edges
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undirected graph
V = {1, 2, 3, 4, 5}
E={(1,2),(1,3),(2,3),(3,4),(4,5)}
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 Graph G=(V,E)
▪ V = set of vertices
▪ E = set of edges
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directed graph
V = {1, 2, 3, 4, 5}
E={‹1,2›, ‹2,1› ‹1,3›, ‹3,2›, ‹3,4›, ‹4,5›}
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 Graph G=(V,E)
▪ V = set of vertices
▪ E = set of edges and their weights

weighted graph
V = {1, 2, 3, 4, 5}
E={(1,2,𝑤12),(1,3, 𝑤12),(2,3, 𝑤12),(3,4, 𝑤12),(4,5, 𝑤12)}
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𝑤12 
𝑤23 

𝑤13 

𝑤34 

𝑤45 

Weights can be either distances or similarities
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▪ degree d(i) of node i
▪ Size of N(i)
▪ number of edges incident on i

▪ Neighborhood N(i) of node i
▪ Set of nodes adjacent to i
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▪ degree sequence
▪ [d(1),d(2),d(3),d(4),d(5)]
▪ [2,2,3,2,1]

▪ degree histogram
▪ [(1:1),(2:3),(3,1)]
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1 2 3

count

degree

▪ degree distribution
▪ [(1:0.2),(2:0.6),(3,0.2)]
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▪ in-degree 𝑑𝑖𝑛(𝑖) of node 𝑖
▪ number of edges incoming to 

node 𝑖

▪ out-degree 𝑑𝑜𝑢𝑡(𝑖) of node 𝑖
▪ number of edges leaving node 

𝑖

▪ in-degree sequence
▪ [1,2,1,1,1]

▪ out-degree sequence 
▪ [2,1,2,1,0]

▪ in-degree histogram
▪ [(1:4),(2:1)]

▪ out-degree histogram
▪ [(0:1),(1:2),(2:2)]
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 Graphs where the set of nodes V can be partitioned into two 
sets L and R, such that there are edges only between nodes in 
L and R, and there is no edge within L or R
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Possible options:

 Weight (e.g. frequency of communication)
 Ranking (best friend, second best friend…)
 Type (friend, relative, co-worker)
 Sign: Friend vs. Foe, Trust vs. Distrust
 Properties depending on the structure of the rest of the 

graph: number of common friends
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Graph Traversals
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 A traversal is a procedure for visiting (going through) 
all the nodes in a graph:
▪ Depth First Search (DFS)
▪ Breadth First Search (BFS)
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 Depth-First Search (DFS) starts from a node i, selects 
one of its neighbors j from N(i) and performs Depth-
First Search on j before visiting other neighbors in N(i).
▪ The algorithm can be implemented using a stack structure
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 Breadth-First-Search (BFS) starts from a node, visits all 
its immediate neighbors first, and then moves to the 
second level by traversing their neighbors.
▪ The algorithm can be implemented using a queue structure
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 A walk is a sequence of incident edges visited one after 
another
▪ Open walk: A walk does not end where it starts
▪ Closed walk: A walk returns to where it starts

 Representing a walk:
▪ A sequence of edges: 𝑒1, 𝑒2, … , 𝑒𝑛
▪ A sequence of nodes: 𝑣1, 𝑣2, … , 𝑣𝑛

 Length of walk: the number of visited edges
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 A trail is a walk where no edge is visited more than once and 
all walk edges are distinct

 A closed trail (one that ends where it starts) is called a tour or 
circuit
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 A walk where nodes and edges are distinct is called a path.
 Path from node i to node j: a sequence of edges (directed or undirected 

from node i to node j)
▪ path length: number of edges on the path nodes i and j are connected
▪ cycle: a path that starts and ends at the same node. A closed path!
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 Shortest Path from node i to node j
▪ also known as BFS path, or geodesic path
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 Shortest paths on weighted graphs are harder to 
construct
▪ There are several well known algorithms for finding single-

source, or all-pairs shortest paths
▪ For example: Dijkstra’s Algorithm
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  To understand the Dijkstra’s Algorithm lets take a graph and find the shortest path from source 
to all nodes.  Consider below graph and  src = 0.
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sptSet={0, INF, INF, INF, INF, INF, INF, INF}
 



 The longest shortest path in the graph
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 All edges are traversed only once
▪ Konigsberg bridges
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 A cycle that visits all nodes
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Graph Connectivity
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▪ Connected graph: a graph where there 
every pair of nodes is connected

▪ Disconnected graph: a graph that is not 
connected

▪ Connected Components: subsets of 
vertices that are connected
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 Clique Kn
 A graph that has all possible n(n-1)/2 edges
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▪ Strongly connected graph: there exists a path from every i to every j. 
has a path from each node to every other node and vice versa (e.g., A-B 
path and B-A path)

▪ Weakly connected graph: If edges are made 
to be undirected the graph is connected
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▪ Strongly connected components (SCCs) can be identified, but not 
every node is part of a nontrivial strongly connected component.

▪ In-component: nodes that can reach the SCC,
▪ Out-component: nodes that can be reached from the SCC.
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 Connected (undirected) graph:
▪ Any two vertices can be joined by a path

 A disconnected graph is made up by two or more connected components

 Bridge edge: If we erase the edge, the graph becomes disconnected
 Articulation node: If we erase the node, the graph becomes disconnected
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 The adjacency matrix of a network with several components can be written 
in a block- diagonal form, so that nonzero elements are confined to 
squares, with all other elements being zero:
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▪ Subgraph: Given V’  V, and E’  E, the graph 
G’=(V’,E’) is a subgraph of G.

▪ Induced subgraph: Given V’  V, let E’  E is 
the set of all edges between the nodes in V’. 
The graph G’=(V’,E’), is an induced subgraph 
of G
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 Connected Undirected graphs without cycles
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 Edges and Vertices Relationship: A tree with n vertices has 
exactly n-1 edges.

 Unique Path: There is a unique path between any two vertices 
in a tree.

 All Edges Are Bridges: In a tree, every edge is a bridge; 
removing any edge will disconnect the graph.

 At Least Two Leaves: Every tree with at least two vertices has 
at least two vertices of degree one, known as leaves.



 For any connected graph, the spanning tree is a subgraph and 
a tree that includes all the nodes of the graph

 There may exist multiple spanning trees for a graph. 
 For a weighted graph and one of its spanning tree, the weight 

of that spanning tree is the summation of the edge weights in 
the tree. 

 Among the many spanning trees found for a weighted graph, 
the one with the minimum weight 

    is called the minimum spanning tree (MST)
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  A simple, undirected graph with no cycles. It consists 
of a collection of disjoint trees, where each connected 
component is a tree.
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 Number of Edges: A forest with n vertices and k connected 
components has exactly n - k edges. This is because each tree 
with m vertices contains m - 1 edges; thus, the total number of 
edges in the forest is the sum of the edges in all its trees.

 Acyclic Nature: Forests contain no cycles; consequently, every 
connected subgraph within a forest is also acyclic.

 Connected Components: Each connected component in a 
forest is a tree; therefore, a forest can be viewed as a 
collection of separate trees.
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 A graph is planar if it can be drawn on a plane without
any edges crossing.
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Graph Representation
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 Adjacency Matrix
▪ symmetric matrix for undirected graphs
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Maryam Ramezani Social and Economic Networks 55



 Adjacency List
▪ For each node keep a list with neighboring nodes
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1: [2, 3]

2: [1, 3]

3: [1, 2, 4]

4: [3, 5]

5: [4]
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 Adjacency List
▪ For each node keep a list of the nodes it points to
▪ Easier to work with if network is

▪ Large
▪ Sparse

▪ Allows us to quickly retrieve all neighbors of a given node
1
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3
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1: [2, 3]

2: [1]

3: [2, 4]

4: [5]

5: [null]
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 List of Edges
▪ Keep a list of all the edges in the graph

1

2

3

45

(1,2)

(2,3)

(1,3)

(3,4)

(4,5)
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 List of Edges
▪ Keep a list of all the directed edges in the graph
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(1,2)

(2,1)

(1,3)

(3,2)

(3,4)

(4,5)
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 Adjacency Matrix
▪ unsymmetric matrix for undirected graphs
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Any Question?
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